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Introduction

“Technology transfer” has become one of the most well-used phrases of
the end of the millennium. The realisation that the worlds of industry and
academia cannot fruitfully progress separately has inspired both communi-
ties to build strong and mutually beneficial relationships. Often this has meant
industry hiring individual professors as consultants, or industry supporting
post-doctoral fellows (common in chemistry). An alternative structure has
been the utilisation of a quasi-governmental organisation as a go-between,
such as NACA/NASA in the US and the Aeronautical Research Council in
the UK for work in aeronautics.Direct contact betweenindustry and the
mathematics community is more recent, achieving recognition via degree
programmes, math-in-industry conferences and journals, all now in a global
context. Half of the chapters in this book are products of Study Groups with
Industry and Math Clinics, and to some extent the other half derive from
similar direct interactions with industry prompted by the successes of these
two initiatives.

Study Groups with Industry started in Oxford in 1968 when a small group
of applied mathematicians (led by Alan Tayler and Leslie Fox) spent a week
problem solving at Oxford University in conjunction with invited representa-
tives from industry. A similar meeting has been held every year since. What
has changed in recent years is the global nature of this industrial/academic
collaboration. In the first 20 or so years Study Groups with Industry only
happened in Oxford, and only once a year: by 1999 meetings running on
similar lines to the Oxford model had also taken place in Australia, Canada,
Denmark, Holland, Indonesia, Mexico, Norway, USA and other locations,
in the same year. In many of these ventures domestic applied mathematics
societies have encouraged and supported this expansion: pivotal roles have
been played in Europe by ECMI (the European Consortium for Mathemat-
ics in Industry), in the USA and Canada by SIAM (Society for Industrial
and Applied Mathematics) and PIMS (Pacific Institute for the Mathemati-
cal Sciences), in Mexico by SMM (Sociedad Matematica Mexicana) and in

1



2 Introduction

Australia by ANZIAM (Australian and New Zealand Industrial and Applied
Mathematics).

The modus operandi of Study Groups with Industry is now well estab-
lished: ahead of the meeting there is solicitation from industry for the
submission of problems, and probably some discussion regarding appropri-
ateness for a week of brain storming. On the first day of the meeting, the
academics, their graduate students, and representatives from industry gather.
After each industrialist has described their specific unsolved problem, a room
is allotted to each industry, and informal groups are formed. The next three
days are spent working intensively on each problem, guided and assisted by
the representative from industry. Fierce debate often rages: theories and coun-
tertheories come and go, and blackboards are filled with equations. Because
of the time constraints that apply, the evenings are often used to work on the
problems. Normally, a consensus is eventually reached. On the final day of the
meeting, progress on each of the problems is summarised and subsequently
a technical problem report is published.

Math Clinics originated at the Claremont Colleges in 1973. The structure
here has a longer time frame: problems are solicited over the summer, and
work on them is contracted for an academic year. Each problem is addressed
over this time period by a team consisting of a faculty supervisor and 4–6
graduate and undergraduate students (one of whom is team leader, a manage-
rial position). The team has the time to do basic research, and during the year
makes a number of oral and written reports. Students are assigned grades as
for a traditional course.

In both the Study Group and Clinic operations, the involvement of stu-
dents is important. How problems originate, how industrialists expect them
to be modelled, and what they expect from an answer, is valuable experi-
ence for students aiming for industrial employment, or starting on research in
applied mathematics. Additionally students working on these problems learn
the dynamics of group work, and the importance of good oral and writing
skills.

What type of problems appear at Study Groups and Clinics? This question
is difficult to answer, for the range is huge. Not only do the problems vary
enormously in physical and mathematical terms, but the reasons that the
industrialist has for bringing a specific problem may vary. Typical “industry
questions” all begin “we have a process. . . ” but may have a range of endings
such as

• “ . . . which is well-understood and has worked well for years, but we
suspect that it could be made more efficient: how can we optimise it?”
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• “ . . . which has worked well for years, but we don’t have much idea why.
Now we’re trying to extend and change it. How does it work?”

• “ . . . which normally works pretty well. Sometimes, though, something
goes wrong. Under what circumstances might we expect this to happen,
what should we measure to give us warning signs and how might we
cure the problem?”

• “ . . . in mind which is new and very promising. Before running expensive
and/or dangerous experiments, we’d like to get an idea of how things
might turn out.”

• “ . . . which works well and we know is safe. But we have to satisfy an
external regulatory body toprove that it is safe. Can you model the
‘worst case’ circumstances for us?”

• “ . . . which we have simulated (ourselves, or bought software for). The
data and the simulations do not agree. What is going wrong?”

As far as the representatives from industry are concerned, finding the
answers to questions of this sort is usually the main priority. There are many
other possible advantages of the interaction. The opportunity to spend time
discussing their problem with a group of experts is attractive, as is the chance
to see what sort of problems other industries have and how they cope with
them. Frequently the discussion widens, and other problems may be con-
sidered. Finally, there is always the chance to build more longer lasting
professional relationships and to recruit promising students.

For the process to be mutually beneficial, everybody concerned must have
a good reason for wanting to take part. Some of the benefits for students have
been referred to above. What about faculty? It turns out that there are many
possible reasons for participating. These include:

• A constant supply of interesting and novel problems which often lead
to publications in leading journals

• The chance to form closer relationships with companies which may lead
to joint studentships and research contracts

• An opportunity to broaden the range of new problem areas leading to a
freshening of the teaching syllabus

• The transfer of mathematics across applications
• A chance to work as part of a team – frequently a novelty for

mathematicians.

How much does all of this cost? Considering the possible benefits to both
industry and the academics involved, the sums involved are surprisingly small.
British Study Groups cost between 10,000–15,000 pounds to run; the money
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is provided by the participating industries (each problem presenter is asked
to contribute about 1000 pounds), and various other organisations such as the
London Mathematical Society and (until recently) EPSRC also contribute
much-needed revenue. As far as the industrial participants are concerned,
the biggest cost is normally that of having their expert in a particular field
away from the office for a whole week. For clinics, the financial details are
rather more large-scale; each clinic project costs the industry concerned a sum
between 35,000 and 45,000 dollars. Although this might sound a lot, for their
money the client gets a year’s work from a dedicated group of experts: the
productivity often equals that of an engineer-year which costs the employer
five times as much. Do they consider this money well spent? This is a question
that can only truly be answered by the industrial scientists themselves, but it is
significant that a large number of projects have been brought to the Claremont
clinics by “repeat customers”.

Thirteen different problems are considered in this book; all originate from
real collaborations with industry. Although some of them are a little difficult
to classify, four of the problems are recognisably elliptic, six are parabolic,
and two are hyperbolic. This distribution may be said to fairly represent the
frequency of each type of problem that is normally encountered at Study
Groups.

The order chosen for the articles is related to ordinary and partial differen-
tial equation classification. Chapters 1–4 concern models based on essentially
elliptic partial differential equations. Chapters 5–10 all involve some form
of diffusion, with nonlinear effects, convection and reaction, and finally
radiation being successively introduced. The classification of the underly-
ing equations in chapter 11 is less clear; the equations contain both parabolic
and hyperbolic features. The concluding two chapters, 12 and 13, address
two hyperbolic problems.




